
Technical Correspondence 

On ‘‘Human Factors Comparison of a Procedural 

and a Nonprocedural Query Language’”’ 

Chamberlin’s letter 

OU This letter is in response to the paper 
by C. Welty and D. W. Stemple, 

“Human Factors Comparison of a Pro- 

cedural and a Nonprocedural Query 
Language,” ACM Transactions on 

Database Systems 6, 4 (Dec. 1981), 

626-649. The authors suggest that the 

But the third observation poses some 

basic problems for the approach sug- 
gested by Welty and Stemple, as illus- 

trated by the following example. 

A CANDIDATE table records a pri- 
mary and secondary skill for each job 
candidate, and a rating for each: 

NAME SKILL1 RATING1 SKILL2 RATING2 CANDIDATE ! 

Smith 

T 

| Teacher 4 

T 

4 

1 

T 

Writer 6 

human factors of the SQL language 
might be improved by introducing a 
JOINED BY clause which specifies 

how two tables are to be joined in a 
query, rather than by including the join 

criterion in the WHERE-clause of the 

query. 

The SQL syntax for joins was influ- 

enced by the following observations: 

(1) Some queries require a join of sev- 

eral tables. 

(2) Join conditions often involve more 

than one column, for example: 

TABLE1.COL1 = TABLE2.COL4 
OR TABLE1.COL3 = TABLE2.COL5 
AND TABLE1.COL2 > TABLE2.COL7 

(3) Join conditions sometimes occur 
mixed with other types of predi- 
cates in Boolean expressions. 

The first two observations can be 

accommodated fairly easily in a 

JOINED BY clause (although Welty 
and Stemple do not make a specific 

suggestion for handling these cases). 

A VACANCY table records, for each 

vacant position in a company, its job 
number and required skill: 

VACANCY REQSKILL 

Writer 

T 1 
' 

+ 4 
' 
' 
j 

A user wishes to state the following 

query: “For each vacancy, print the job 

number matched with the candidates 
who have the required skill with a rat- 

ing of at least 5.” In SQL, this query 
would be stated as follows: 

SELECT 
FROM 
WHERE 

JOBNO, NAME 
VACANCY, CANDIDATE 
REQSKILL = SKILL1 AND 
RATINGI > 5 

REQSKILL = SKILL2 AND 
RATING2 > 5; 

OR 

This query cannot be stated with a 

JOINED BY clause unless all the 

predicates are placed in the JOINED 

BY clause, in which case the distinction 
between the JOINED BY clause and 

the WHERE clause becomes unclear. 

ACM Transactions on Database Systems, Vol. 7, No. 2, June 1982, Pages 316-318. 

| 

= 



In summary, I do not believe that a 

clear distinction exists between the join 

condition of a query and its other pred- 

icates, or that the SQL language would 
be improved by attempts to draw such 

a distinction. 

Dona.p D. CHAMBERLIN 

IBM Corporation 

5600 Cottle Road 

San Jose, CA 95193 

Welty and Stemple’s reply 

0 Our suggestion of using JOIN in SQL 

was motivated by the superior perform- 

ance of subjects using the TABLET 
language on join problems. TABLET 

does use an explicit JOIN. If the differ- 

ence in subject performance was only 

due to the existence of JOIN in TAB- 
LET and its absence in SQL, this 

change would help. We tend to agree 

with Dr. Chamberlin that adding JOIN 

to SQL would not help, believing in- 
stead that the difference is actually due 

to the underlying procedural nature of 

TABLET, and minor syntactic changes 

will probably not result in improved 

user performance in SQL. The possibil- 

ity of a simple syntactic fix to SQL was 
an obvious result of the experiment 

and, thus, was one of the recommen- 

dations. This recommendation would 
have to be tested by further experimen- 

tation to see if user performance is im- 

proved. We do have doubts that it will 

improve performance because both 

SQL and TABLET used GROUP BY 
(identical syntax), but TABLET out- 

performed SQL on these problems, too. 

We disagree with Dr. Chamberlin’s 

contention that a clear distinction can- 
not be drawn between a join condition 

and other predicates. To demonstrate 

this using his example, we must con- 
sider the relational calculus query un- 

derlying the SQL _ version. The 

WHERE clause of a SQL query corre- 

Technical Correspondence 317 

sponds almost directly to the predicate 
of a relational calculus expression. SQL 

itself has some aspects akin to the re- 
lational calculus, others more akin to 

the relational algebra. JOIN is an op- 

erator in the relational algebra. In add- 

ing the JOIN clause to SQL we are 
transforming it to a more algebraic 

form. This process is analogous to that 
given by Codd [1]. In this algorithm the 

join terms of the predicate become join 

expressions using the join operator. In 
addition, \v (or) becomes U (union) and 

/\ (and) becomes /N (intersection). This 

is a simplification of the process, but 

suffices for Dr. Chamberlin’s example. 
Applying this transformation to the 

SQL query in Dr. Chamberlin’s letter 
we obtain: 

SELECT JOBNO, NAME 
FROM VACANCY, CANDIDATE 
JOINED BY REQSKILL=SKILL1 
WHERE RATINGI1 > 5 

UNION 
SELECT JOBNO, NAME 
FROM VACANCY, CANDIDATE 
JOINED BY REQSKILL=SKILL2 
WHERE RATING2 > 5 

Use of AND between the join terms 

would result in an INTERSECT oper- 
ator being used. More complex queries 
naturally receive more complex trans- 

formations. The above transformation 

was simplified by the fact that JOBNO 

and NAME are the key attributes of 

the joined relations, as well as being the 
attributes being SELECTed. 

Again, we do not believe that such a 

query will necessarily be easier to write 

than the current SQL form. But we do 

believe that a syntactic distinction 

which mimics the distinction between 

selecting more information from one 

table and combining information from 

more than one table should be present 
in a well-designed query language. Both 

ACM Transactions on Database Systems, Vol. 7, No. 2, June 1982. 

| 

| 
i | 

| 

| 

if 



318 Technical Correspondence 

Lochovsky’s experiment [2] and ours 

provide a basis for this. 

CHARLES WELTY 

Math and Computer Science Department 

University of Southern Maine 

96 Falmouth Street 

Portland, ME 04103 

Davip W. STEMPLE 

Computer and Information 

Science Department 

University of Massachusetts 

Amherst, MA 01003 

REFERENCES 

1. Copp, E.F. Relational completeness of data 

base sublanguages. Courant Computer Sci- 

ence Symposia, vol. 6: Data Base Systems. 
Prentice-Hall, Englewood Cliffs, N.J., 1971. 

. Locnovsky, F.H. Data base management 

system user performance. Tech. Rep. CSRG- 

90, Computer Systems Research Group, 

Univ. Toronto, Toronto, Ont., Canada, April 

1978. 

ACM Transactions on Database Systems, Vol. 7, No. 2, June 1982. 

| 

| 

| 


